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SUMMARY

Interaction between computational �uid dynamics and clinical researches recently allowed a deeper un-
derstanding of the physiology of complex phenomena involving cardio-vascular mechanisms. The aim
of this paper is to develop a simpli�ed numerical model based on the Immersed Boundary Method
and to perform numerical simulations in order to study the cardiac diastolic phase during which the
left ventricle is �lled with blood �owing from the atrium throughout the mitral valve. As one of the
diagnostic problems to be faced by clinicians is the lack of a univocal de�nition of the diastolic per-
formance from the velocity measurements obtained by Eco–Doppler techniques, numerical simulations
are supposed to provide an insight both into the physics of the diastole and into the interpretation of
experimental data. An innovative application of the Immersed Boundary Method on unstructured grids
is presented, ful�lling accuracy requirements related to the development of a thin boundary layer along
the moving immersed boundary. It appears that this coupling between unstructured meshes and the
Immersed Boundary Method is a promising technique when a wide range of spatial scales is involved
together with a moving boundary. Numerical simulations are performed in a range of physiological pa-
rameters and a qualitative comparison with experimental data is presented, in order to demonstrate that,
despite the simpli�ed model, the main physiological characteristics of the diastole are well represented.
Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

At present, the diastolic dysfunction is considered a primary mechanism in the pathogenesis
of the cardiac congestion and it appears to be also one of the earliest detectable alterations
in many pathological conditions of the heart [1; 2]. Therefore, immediate and adequate ther-
apies could sensibly improve the diastolic performance as well as they could also avoid the
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consequent overload in the systolic function. An accurate diagnostic tool is based on the di-
rect measurement of intra-cardiac pressure but this is obtainable only by means of cardiac
catheterism. This latter is a kind of investigation both expensive and not completely risk-free
for the patient; for this reason, it is often preferable to use a non-invasive diagnostic process,
based on the analysis of measurable data (i.e. velocity patterns) related to the ventricular �ll-
ing and to the haemodynamics parameters of the diastolic function [3; 4]. Unfortunately, all
non-invasive techniques are not able to provide a direct measurement of the pressure, which
is a necessary parameter to characterize the diastolic function. Thus, the velocity measure-
ments can give only a partial representation of the ventricular �lling rather than provide a
comprehensive chart of indexes of the actual performance [1–4] in diastole.
While the knowledge of some physiological parameters, measured by catheterism (i.e. com-

pliance and relaxation), leads to a univocal interpretation of the ventricular �lling, the opposite
is not always true (the so-called reverse problem of the diastole). As a consequence of a
non-invasive diagnostic process, the analysis of the ventricular �lling cannot provide such
requested univocal interpretation of the diastolic performance. In fact, occasionally, obser-
vations of pseudo-normal velocity patterns con�rm that di�erent conditions of the diastolic
performance (i.e. pressure levels and compliance) can originate the same appearance of the
�lling.
Such a non-univocal de�nition of the reverse diastolic problem generates uncertainties in

adopting Doppler measurement, which is one of the most used tools in non-invasive diagnos-
tic processes. Although the pulsating Doppler echocardiography allows clinicians to measure
�ow velocities both throughout the mitral valve and the pulmonary veins, any modi�cation
of these measurements results as a consequence of complex interactions between pressure
and ventricular volumes and the hope of clinicians is to be able to correlate these distinct
appearances. Often, they consider the correlation between velocity and pressure that is pro-
vided by the Bernoulli equation but the hypotheses required for considering valid such an
equation are quite far to be accomplished in the cardiac �uid dynamics. Furthermore, the
Doppler measurement is related only to the averaged stream-wise �ow component thus, lack
of multi-dimensional information can add some confusion in the clinical interpretation.
As a matter of fact, the blood motion is governed by the solution of the unsteady Navier–

Stokes (NS) equations, the Bernoulli equation being appropriate only for very simple cases.
In this paper the blood is considered to be a Newtonian �uid, as proposed by Pedley [5]; this
assumption is based on the hypothesis that, with exception of micro-circulation, blood has a
Newtonian behaviour when shear rate grows up (it is generally accepted that plasma behaves
as a Newtonian �uid in physiological conditions). In the case of constant �uid density, as it
can be also assumed for the blood [5], the pressure in the numerical solution of NS equations
is not considered as a thermodynamics variable but it is determined as a scalar function from
the enforcement of the continuity equation and it depends on an arbitrary function of time.
Many potentialities, o�ered to clinicians by the Computational Fluid Dynamics (CFD),

have been only partially exploited although some methodologies of CFD have been already
presented and applied in a series of papers by Peskin et al. [6–12] where 2-D and 3-D
simulations are illustrated in the framework of the Immersed Boundary (IB) Method. In
such simulations, among other various problems, trans-mitral �ows were studied in order to
provide a support to clinicians in testing prosthetic valve e�ciency. Some other examples
of computational methodologies, for studying the diastole, were shown by Yellin et al. in
Reference [1] while simpler mathematical models were proposed by Thomas et al. in
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Reference [2]. They analysed the pathological relevance of modi�cations of some physio-
logical parameters that are measured by the Doppler echocardiography and the main target
was to provide a clear indication of the actual diastolic function by means of one or more
global performance indexes.
Numerical simulations of such �ows are of great relevance in supporting clinicians and

realistic simulations should take into account both a physiological Reynolds number and the
elastic properties of the �bres along with an accurate description of the time varying properties
of them.
Unfortunately, owing to the complexity of the problem, the di�culties in performing accu-

rate simulations come along with the fact that clinical diagnosis does not provide the knowl-
edge of many parameters required for de�ning the boundary conditions. It results, for example,
that no point-wise velocities are measured onto the boundary of the domain: �ow rate of pul-
monary veins, mean pressure in atrium (but only with catheterism), atrial and ventricular
volume deformations (obtained by NMR) are some of the measurable quantities that can be
exploited in order to formulate approximate numerical boundary conditions. Therefore, a sim-
pli�ed model in which some approximate boundary conditions can be properly applied, is
tested in this paper.
In fact, a 2-D equivalent geometry is decomposed by an unstructured tessellation and, by

adopting the IB method, the discrete NS equations for incompressible �ows are solved. In
the 2-D model, the dynamic of the mitral valve is simulated by considering each lea�et as a
chain of elastic links, as also proposed in References [6] and [9], a formulation in which the
material line, immersed in the �uid, acts as a local source of additional stresses, leading to a
complex solid–�uid dynamics interaction. The application of an unstructured grid is motivated
by the necessity of resolving the known accuracy problems in adopting the IB method when a
thin boundary layer develops along the immersed boundary [12]. Although the approach on a
structured grid is probably simpler to implement, as long as a local re�nement is not required,
the unstructured grid is still the best method if a wide range of spatial scales is involved,
allowing us more easy adaptive strategies than those necessary in the structured case (e.g.
Reference [13]). The IB technique was also adopted by other authors (e.g. see Reference
[14]) in computations of complex geometry de�ned on a Cartesian grid. However, in such
simulations, the interpolation problem is the main issue to be solved, as no deformation and
no stresses are induced in the �ow by the �xed body. The main problem is that no-slip and
non-permeable conditions are required on the boundaries and the ful�llment of the continuity
constraint, when the boundaries do not match the grid, is still an open issue.
As the diastole is characterized by a rapid time variation of the physiological variables,

being the characteristic period less than half-second, a contribution of this study was also
in applying a high order integration method, originally developed for the Finite Volumes
(FV) approach on both structured and unstructured grids [15–18]. An approximate projection
method, developed in the framework of the Fractional Time-Step (FTS) method [19; 20], is
adopted; it is out of the aims of this paper to analyse the issue of the actual accuracy of the
FTS method (e.g., see References [21–24]) but it is worthwhile observing the existence of
convergence proofs [25] for the discrete formulation. Moreover, the actual accuracy of the IB
method is still under investigation [12; 26; 27].
The outline of the paper follows: in Section 2 an analysis of both model limitations and

validity of some simplifying hypotheses, is presented while mathematical and numerical tech-
niques are described in Sections 3 and 4. In the last section, some results are presented and
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compared to available experimental measurements, demonstrating that the main characteristic
of diastole can be satisfactory represented [28; 29], albeit the simplicity of the adopted model.

2. DESCRIPTION AND MODELLING OF DIASTOLE; COMPUTATIONAL
HYPOTHESES

The diastole is that part of the cardiac cycle during which the blood, �owing from the left
atrium throughout the ori�ce of the mitral valve, �lls the left ventricle. In order to quantify the
diastolic performance of the left ventricle, the ventricular �lling is often analysed by means
of non-invasive Doppler measurements (an example of experimental measurement is reported
in the plot of the pulsed Doppler of Figure 1(a) along with that one, obtained by means of
trans-thoracic echo-cardiographs M-colour technique, reported in Figure 1(b).
Since the aortic valve closes until the opening of the mitral lea�ets, the left ventricle

practically results a closed chamber with constant volume. The myocardial relaxation, caused
by complex physics and chemical mechanisms [30] not considered in the present paper, starts
in the �nal part of the systole and it is characterized by a rapid exponential falling of the
intra-ventricular pressure that prepares to the diastole. The gradient, generated by this sudden
pressure drop, accelerates the blood from the left atrium towards the left ventricle, resulting
in a rapid �lling that can be observed in the latter plot of Figure 1(a), from the appearance of
the so-called E-wave recorded from Doppler measurement. In normal conditions, mainly two
factors contribute to originate the pressure gradient and the ventricular �lling: the dynamic
of the ventricular relaxation and the asymptotic pressures value in the left atrium. During
the �lling, depending on the elastic properties of the ventricle (i.e., the compliance), the
left ventricular pressure increases; as a consequence, the pressure gradient decreases and,
transiently, reverses. In the mid-portion of diastole (slow �lling), only a small quantity of
blood �lls the ventricle, as it can be deduced from the �at part of the curve in Figure 1(a).
Eventually, the atrial contraction increases the pressure value in the atrium, late in the diastole,
by causing the blood to �ow again in the left ventricle (A-wave) until the closure of the mitral
valve. A normal time period of diastole is supposed to be about 0:5–0:6 s. During the �lling,
interacting the mitral lea�ets with the �uid, they will become responsible of the production
of vortical structures. Although in a normal function the turbulence level is not very high,
because red blood cells could be destroyed by a strong microcirculation, the vorticity plays an
important role into the closure of the valve, generating the re-circulation behind the lea�ets.
The closure of the lea�ets can be altered by stenosis causing blood regurgitation in the atrium
and these are some of the motivations that lead us to perform numerical simulations in order
to support the implant of prosthetic valves.
From this general picture, it appears that the velocity patterns are not su�cient by them-

selves to provide a correct analysis of the diastolic performance and, in some cases, non-
univocal interpretations are possible [1–4; 28; 29].
In light of such addressed physical description of the diastolic phase, some simplifying hy-

potheses are introduced into the numerical model. The main simpli�cation consists of adopting
a 2-D geometry, which clearly represents only a rough assumption of the real geometry while
a fully 3-D case should be considered. However, as reported in References [6; 7; 9; 12], the
plane of calculation can be physically assumed as the one bisecting the lea�ets of the mitral
valve, the root of the aorta and passing through the apex of the heart, as it is drawn in
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Figure 2. On the boundary of this plane, only two in�ows, representing the pulmonary veins
(instead of the four present in the human heart), are assumed on the opposite faces of the
atrium. The atrial contraction is modelled by assuming a suitable normal velocity distribution
along the walls. More precisely, the time-dependent �ow rate, measured in the pulmonary
veins by means of the pulsed Doppler (see Figure 1(a)), is adopted as numerical in�ow
condition. It is quite complicated to extract useful numerical conditions from volume mea-
surement during atrial contraction, because the volume variation rate does not directly de�ne
a normal velocity component along the atrial walls. Several normal velocity distributions were
tested and the best results were obtained with the one presented in this paper; in particular,
the normal velocity is assumed to be uniformly distributed along the walls and modulated in

Figure 1. (a) Example of transmitral velocity measurement, during a normal left ventricle �lling, as
registered by the pulsed Doppler. The upper plot is representative of the recorded pulmonary �ow, the
lower one, with the characteristic E-A waves, of the transmitral �ow. (b) Example of velocity map
reconstructed by means of the velocity measurement with M-mode colour Doppler, during a normal left
ventricle �lling. The time is represented along the x-direction whilst, from bottom to top of the �gure, the

stream-wise velocity magnitude between the atrium and the ventricle is shown.
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Figure 1. Continued.

Figure 2. Sketch of the 2-D heart section adopted as computational domain. The line along which the
velocities are registered is shown.

time by starting from the time of the beginning of the contraction, say Tac during which the
pulmonary �ow reverses.
A further simpli�cation is that no deformation of the ventricular boundary is considered

thus, in order to satisfy the mass balance, blood is allowed to �ow through the ventricular wall
just as if the surfaces were permeable. For what it concerns the valve model, the mitral lea�ets
are assumed to be mass-less and the presence of the chordae tendineae has no in�uence on
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the �ow, apart from the forces they apply on the tips of the mitral lea�ets. Finally, the lea�ets
are able to produce only normal stresses (i.e. directed along the local tangential direction of
the material line).
A �nal comment concerns the quantitative comparison between experimental measurements

and 2-D numerical computations. In the former case, Doppler technique measures �uid dis-
placement for volume unit, while in the latter the 2-D variables are computed for unit of area
thus an arbitrary scale representation is introduced. Although 2-D results cannot be considered
fully explicative of real 3-D �ows, good qualitative comparisons with experimental data are
presented.

3. GOVERNING EQUATIONS AND MATHEMATICAL DESCRIPTION OF THE
IMMERSED BOUNDARY METHOD

The blood motion is governed by the NS equations for incompressible �ows constituted by
the momentum equation, written in integral form in a generic domain �∫

�

@v
@t
dV =

∫
@�
n·F dS (1)

along with the continuity constraint ∫
@�
n·v dS=0 (2)

and proper initial and boundary conditions. In Equations (1) and (2), @� is the boundary
of the domain, v= iu + jv is the velocity vector expressed in a Cartesian reference system
(x= ix + jy), the �ux function F being expressed by the tensor

F=−vv − Ip
�
+ �∇v+ T

�
(3)

Here, � is the blood density assumed constant (1:05×103 Kg m−3); �=�=� is the constant
kinematics viscosity (6×10−3 m2 s−1); p is the pressure, I is the unit matrix and T is the
stress tensor, including the contribution of the elastic forces due to the mitral lea�ets. The
mitral lea�ets are considered as part of the �uid wherein additional stresses, produced by
�bre strain, are transmitted to the rest of the �uid. In considering such an approach, the main
advantage is that the equations, governing the �ow motion, can be solved on a �xed domain
(Eulerian description) while the motion of the lea�ets can be simulated by that of an elastic
chain of discrete points (Lagrangian description), moving into the domain and interacting with
the �uid. The displacement of the material points along the �bre S is subject to the governing
equation:

@X(s; t)
@t

= v[X(s; t); t] (4)

(let us adopt the notation X(s; t)= (X (s; t); Y (s; t)); s∈ S; according to References [6–12])
ful�lling the condition that the lea�et points move at the local �uid velocity according to the
no-slip condition. In particular, one velocity �eld v, satisfying the constraint of Equation (2),
can be used to describe simultaneously both the �uid and the �bre motion.
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After introducing a simpli�ed assumption, the lea�ets are considered capable of exercising
only tension (or compression) stresses. The lea�et stress, induced at any time t by the di�erent
motion of each discrete point, is �=�[�(X)] where � is the tension acting along the elastic
lea�et and �= ‖@X=@s‖ is the strain rate. Therefore, in a local curvilinear reference system
(s; n), such that the unit vector is is directed along the length of each associated lea�et element
and in is normal to it, the only non-vanishing component of the (2×2) tensor S[X(s; t)] is the
element S11 =� thus one gets S=�isis. For each �bre-point, according to the Hooke’s law,
the stresses can be computed with respect to their initial length at rest as �=E� and E is
the given sti�ness of the mitral lea�ets. The stress vector associated to the direction is i.e.,
�= is·S= is�; will generally produce in the global reference system both x- and y-components
according to �=�(sxi+syj); wherein (sx; sy) are the components of the unit vector is along the
directions i and j, respectively. The equations describing the lea�et stresses are computed in
the Lagrangian reference system so that, in order to compute the contribution in the Eulerian
one, it is necessary to specify a functional relation between the two systems.
Then, a de�nition of a proper functional relation is required to correlate:

∫
@� n·T(x; t) dS

in Equation (1) to the elastic force density‡ f = @(is�)=@s, acting along the chain of points,
in such a way that

∫
{s:X(s; t)⊂�} f(s; t) ds represents the total elastic force acting on the �uid

contained in �. A relation of the kind �(x)=M�(X);∀x∈� accomplishes this goal, wherein
M is a suitable operator de�ning the mapping between the Lagrangian and the Eulerian system.
In this work the operator M will be expressed by means of a cosine-hill function, centred in
x and having an in�uence radius that depends on a characteristic length of the grid, as it will
be described more in details in the next section.
In many applications of the IB method, a 2-D Dirac function �(x−X(s; t)), expressed in a

proper discrete form [6–12], is used; accordingly, it can be shown that Equation (4) becomes
expressed as

@X(s; t)
@t

=
∫
�
v(x; t)�(x −X(s; t)) dV

as well as one has ∇·T(x; t)= ∫
S ·f (s; t)�(x −X(s; t)) ds.

In the approach proposed in References [6–12] the latter term has a singularity of the
same type of the one-dimensional delta counterpart as a point-wise di�erential formulation is
adopted. Owing to the integral formulation of Equation (1) used in the present paper, such a
singularity disappears when ∇·T is integrated over the sub-region corresponding to a Finite
Volume.

4. DOMAIN DISCRETIZATION AND NUMERICAL PROCEDURE

The goal of obtaining accurate numerical solutions, by means of the IB technique, requires
a careful consideration both of the numerical scheme and the domain discretization, as it is
known that such a method is only �rst order accurate in space, close to the immersed mate-
rial line. In fact, the lack of accuracy, coupled with the approximate resolution of continuity

‡The force balance on 1-D material �bre is, d=dt
∫
s16s6s2

m(s)[(@)=(@t)]X(s; t) ds=(�is)|s2s1 +
∫
s16s6s2

[−f(s; t)] ds
where −f is the reaction of the �uid on the �bre. As the lea�et is assumed to be mass-less one gets
0=

∫
s16s6s2

[(@(�is))=(@s)− f(s; t)] ds.
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equation near the immersed boundary, creates mass conservation problems [9]. A proposed
solution consists of re�ning the grid near the immersed lines and, following such approach,
successful results were obtained [12]. Moreover, peak velocities of about 1ms−1 are common
during a normal diastole and the physiological Reynolds number can locally result in a mag-
nitude order greater than 5×103. It turns out that the characteristic length and time scales are
so small to require an accurate time-space numerical integration over a well-re�ned compu-
tational grid. The next subsections contain the details of both the domain and the equations
system discretizations.

4.1. Unstructured-based domain discretization
To the authors’ knowledge, the IB method simulations were originally performed using a non-
physiological Reynolds number; in the simulations of Peskin et al. [6–12] the Reynolds num-
ber was kept 25 times smaller than the real one. Moreover, Stokes �ows were considered in
the second order Immersed Interface Method [26]. As the boundary layer thickness develops
along the lea�ets according to �≈√

�t; a grid step size of about 10−3 m should be adopted
in this region in order to capture the features of the transitional �ow. This is expected in the
ventricular chamber, due to the massive �ow separation induced by the boundary layers along
the mitral lea�ets.
In our opinion, in order to face such requirements, the type of domain discretization that

is generally more suitable for both complex geometry and viscous �ows, is the one based on
a triangulation of the domain [13], allowing us a local re�nement of the grid in a �exible
way. In this study, the domain decomposition is performed by using a Frontal–Delaunay
unstructured grid generator with post-optimization [11; 15]. The post-optimization procedure
guarantees the presence of only �ve, six, or seven connected edges for each grid point,
minimizing the interpolation errors. Although such a grid could allow us to consider the mitral
lea�ets as part of the boundaries and to adopt a moving adaptive grid, in order to use a fully
Eulerian formulation [31], this procedure is computationally expensive and it introduces further
approximations in the step-by-step grid adaptation and mesh-to-mesh interpolation procedure.
Some examples of the quality of the above referenced unstructured grid are shown in

Figure 3. In Figure 3(a), the triangulation of the 2-D heart section, including a grid re�ne-
ment near the walls, was obtained with only 1627 nodes. The markers in the �gure represent
an example of the mitral lea�et discretization at the initial resting condition of diastole. It is
worthwhile highlighting that, although only a few nodes are used, the smallest grid size is
about 4:4×10−4 m, which is 80 times smaller than the normal diameter of the mitral annulus
and this grid size is su�ciently small to describe the boundary layers. Figure 3(b) shows
the local re�nement that is performed in the region in�uenced by the immersed lines and in
Figure 3(c) the resulting angle distribution of the grid in Figure 3(b) is shown. The quality of
the grid is associated with the interpolation errors that are minimized in the case of approx-
imate equilateral triangles, as it is obtained in the present grid. Introducing a decomposition
of the domain in KT triangles, a dual tessellation D in N Finite Volumes �i (see Figure 4)
of the domain � is de�ned so that it is {�i}: �=

⋃N
i=1 �i; �i∩�j= {0} ∀i �=j; over which

the NS Equations (1) and (2) are solved.
Furthermore, the l-th side of the �nite volume is obtained by linking the geometrical centres

(P and Q) of two adjacent triangles as it is shown in Figure 4. Thus, the �ux section is not
automatically perpendicular to the common side of such triangles and a proper projection must
be performed in the �ux computation.
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4.2. The Fractional Time-Step-based numerical procedure: �ux reconstruction and
mapping function on unstructured grid

The numerical integration procedure is based on the Fractional Time-Step (FTS) Method
[19–24] applied into the framework of a Finite Volume approach originally developed on both
structured and unstructured grids, for simulating high Reynolds numbers �ows and reported

Figure 3. (a) Example of unstructured grid generation for the computational domain showed in Figure 2
with a local re�nement on the walls. The total points number is 1627 and the obtained smallest grid size
is ≈4:4×10−4 m. (b) The same grid of (a) with a local re�nement in the region in�uenced by the im-
mersed lines. (c) Angles distribution of the grid in (b); the values, expressed in degrees, are reported in

the x-direction while the number of angles, in the y-direction.
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Figure 3. Continued.

Figure 4. Geometrical de�nition of the Finite Volume �i adopted on the 2-D unstructured grid and
details of a generic l-th �ow section @�i, along which the polynomials are integrated, is also reported.

in detail in References [15–18; 32–34]. The N momentum equations, associated with the
continuity constraint of Equation (2), can be written in a weak formulation according to
Equation (1), as:

[�v(xi ; tn+1)− �v(xi ; tn)]≡ 1
|�i|

∫
�i
[v(x′; tn+1)− v(x′; tn)] dx′

=
1

|�i|
∫ tn+1

tn
dt

∫
@�i
n·F dS (5)
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where xi is a point in �i ; |�i| is the measure of the i-th FV and �v is the local cell-averaged
velocity.
The adopted methodology takes into account the requirement of solving �ow �elds having

signi�cant contributions coming from the highest wavenumbers components in the resolved
spectrum (0; Kc); being Kc=�=h the highest theoretically resolvable wavenumber, in the 1-D
counterpart, given a grid of size h and a spectral method. In fact, while these components
result exactly resolved by means of spectral methods, the volume average smoothes the higher
components of the resolved spectrum (the wavenumber components are a�ected since before
the second half of the spectrum) and a deconvolution procedure, developed for the FV scheme
on unstructured grid, is adopted as described in the following subsections.

4.2.1. Flux reconstruction methodology on unstructured grid. The velocity functional repre-
sentation, in each sub-domain �i, is obtained by means of a localized Taylor expansion about
the point xi:

�v(xi) =
1

|�i|
m∑
l=0

1
l!

∫
�i
Plv(x′) dx′ +O(|�x′i |m+1)

Plv(x′) ≡
[
(x′ − xi) @@x′

∣∣∣∣
x′ = xi

+ (y′ − yi) @@y′
∣∣∣∣
x′ = xi

](l)
v

(6)

wherein the operator Pl; expressing the symbolic power of the di�erential operators, is obtained
by taking the l-th power and replacing each product of l partial derivatives by the l-th
derivative with respect to corresponding variable [16]. Thus, when Equation (6) is truncated
at the order m+ 1, the LHS of Equation (5) can be rewritten in a compact form as:

[�v(xi ; tn+1)− �v(xi ; tn)]≡�t �vn+1(xi)∼=(Ixi − R(m)xi )�tvn+1 (7)

where Ixi is the identity operator in xi and R
(m)
xi is a linear di�erential operator de�ned as:

R(m)xi v≡ − 1
|�i|

m∑
l=1

1
l!

∫
�i
Plv(x′) dx′ (8)

Under suitable hypotheses [35], it is possible to do the approximate inversion of the operator
(Ix − R(m)x ) according to the following expansion

(Ix − R(m)x )−1 = Ix + R(m)x + (R(m)x )
(2) + · · · (9)

that will be truncated to the m-th power of the associate diameter 2r, being |�i|=�r2.
The e�ect of this operator can be better explained by considering the counterpart in the 1-D

Fourier space: a resolved component eikx is drastically smoothed close to the cut-o� frequency
Kc by the volume integral adopted in Equation (5), which consists in a top-hat �ltering
operation. For example, the convolution product eikx=1=2h

∫ x+h
x−h e

ikx′ dx′ can be expressed in
the Fourier space as G(k)eikx; where G(k)= sin(kh)=kh is the transfer function associated to
the top-hat �ltering. Around the cut-o� frequency, some information is recovered by means of
the de-�ltering operation of Equation (9) and they contribute to reconstruct a more accurate
(with respect to the real one �v) averaged variable, say ṽ, than the previous �v. In fact, according
to the Fourier transform of Equation (9), the modi�ed transfer function H (k) is expressed
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as H (k)= (C0 + C1kh + C2(kh)2 + · · ·)G(k), Ci being the coe�cients of the moments of
the Taylor series. The highest resolved frequencies are, therefore, better represented [32; 33]
and Equation (5) represents a new balance equation for such de-�ltered velocity. The main
consequence of this modi�cation is that one has a resolved �eld that tends to be similar
to that one obtained from a spectral method, according to an increasing order m. The �nal
comment is that a proper closure should take into account the contribution of the residual
�uctuation of v with respect to ṽ. This issue is more properly addressed in the framework
of the 3-D Large Eddy Simulation of turbulent �ow and is not considered in this paper.
Thus, no sub-grid scale models are considered in this work and the direct approximation
F(v)∼=F(ṽ)≡ F̃ is adopted. Owing to the de-�ltering operation, this approximation is more
accurate than the one represented by F(v)∼=F(�v) and one can �nd that the modi�ed equation
can be reinterpreted as an equation with an implicit sub-grid scale model [33]. In conclusion,
Equation (5) approximates as:

�t ṽ
n+1(xi)∼= 1

|�i|
∫ tn+1

tn
dt

∫
@�i(x)

n·(Ix′ + R(m)x′ + · · ·)F̃ dS (10)

Some fundamental di�erences arise by applying the same de-�ltering approach on structured
or unstructured grids, because the commutation property between line integrals and derivatives
does not apply on an unstructured grid, as well as on non-uniform structured grids. While in
Equation (5) this property is not required, Equation (10) results by disregarding the commu-
tation terms coming from the application of Equation (9) on �(x) and, as a consequence,§

m=1 is the congruent order of the expansion of Equation (8) to be adopted. Only on uniform
structured grids the derivatives and the integrals do commute and the integral terms in R(1)x
vanish if xi is the geometric centre xg of the Finite Volume, according to the second order
approximation �v(xg)= v(xg)+O(h2). Conversely, on the adopted unstructured grid, it generally
results xi �=xg and, in order to retain second order accuracy, the integrals of the linear terms in
Equation (10) must be computed while a higher order of accuracy cannot be reached without
taking into account the commutation error.
All of the integral terms appearing in Equation (9) can be computed by simply adopting,

over each triangle Tj composing �i and having its vertices in the points i, n, p (n, p are the
centre of two adjacent triangles), a local system of co-ordinates

x′ = �ixi + �nxn + �pxp

y′ = �iyi + �nyn + �pyp
(11)

being �i, �n, �p the shape functions in a Finite Element fashion. Accordingly, in Equation (9)
the integrals to be computed are the following:

1
|�i|

∫
�i
(x′ − xi) dV = xg − xi; 1

|�i|
∫
�i
(y′ − yi) dV =yg − yi

§Considering the rule of derivation of an integral function, Equation (5) should be correctly written taking into
account that for smooth grids: (Ix + R(m)x + · · ·){[1=|�i(x)|]

∫
@�i(x)

n·F̃ dS}= [1=|�i(x)|]
∫
@�i(x)

n·(Ix + R(m)x +

· · ·)F̃ dS + O[R(m)x @�i(x); R
(m)
x [1=|�i(x)|]].
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1
|�i|

∫
�i
(x′ − xi)(y′ − yi) dV = xiyi − xiyg − xgyi + 1

|�i|
∫
�i
x′y′ dV

1
|�i|

∫
�i
(x′ − xi)2 dV = x2g − 2xgxi +

1
|�i|

∫
�i
x′2 dV

1
|�i|

∫
�i
(y′ − yi)2 dV = y2g − 2ygyi +

1
|�i|

∫
�i
y′2 dV

· · · (12)

and so on for higher values of m. Those of the integrals of Equation (12) required for the
inversion of Equation (9) are computed by substituting Equation (11) and by considering that:∫

Ti
�	i �



��
�
p dV =

	!
!�!
(	+ 
+ �+ 2)!

2|Tj| (13)

being |Tj| the measure of the j-th triangle extension.

4.2.2. Lea�et stresses calculation by means of the mapping method. In order to compute the
stress tensor T(x; t); the equations that provide the contribution of the lea�et stresses in the
Lagrangian system, must be �rstly solved; thus, by using Nl one-dimensional elements, for
which a linear behaviour for the nodal displacement is assumed, each lea�et is discretized.
The stresses distribution could be computed from the known con�guration Xn i.e., the con-
�guration of the immersed lines at the beginning of the (n + 1)-th time step. The updated
position Xn+1 is computable, from the Eulerian variables,‖ by integrating Equation (4) ac-
cording to X(s; tn+1)=X(s; tn) + �tv[X(s; tn)] + �t2a[X(s; tn)]=2 + O(�t3) being a[X(s; tn)]
the Lagrangian acceleration. As it is known that some sti�ness problems could arise, this
kind of explicit second order integration requires care in adopting a proper time integration
step, owing to restricted stability region constraints. Some authors [6–12] suggest getting the
solution of the �uid-boundary interaction equations by computing a preliminary con�guration
X∗ approximating X(s; tn+1) (the so-called approximately implicit IB method), then compute
the elastic force distribution from such con�guration.
In the computations presented in this paper, such an approach was adopted since it results

su�ciently stable for our aims and much less computationally onerous than a fully implicit
one. The con�guration X∗, along with the stresses S depending on the resulting �bre strain, is
computed from a second order accurate prediction–correction step. As each element expresses
a stress matrix in the local reference system, by assembling the global stress matrix in a Finite
Element fashion, the stresses on the 2(Nl + 1) nodes (always in the Lagrangian reference
system) are computed; �nally they are mapped back into the Eulerian system by means of a
spreading operator. The updated con�guration X(s; tn+1) will be obtained after the projection
step that will allow us to compute the divergence-free velocity. This procedure will guarantee
that lea�et equilibrium and �uid conservation principles are satis�ed at tn+1 congruently to
the accuracy of the global method.

‖By remembering that any vector b expressed in the Lagrangian system is related to that on the Eulerian one from
b[X(s; t)]=

∫
� b(x; t)�(x − X(s; t)) dV; i.e. by a proper interpolation of the set {bi}.
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Figure 5. Mapping function M (r)R, spreading the stresses onto
the Eulerian grid, versus the local radius r.

For what it concerns the spreading of the stresses, by adopting for this purpose the Heavy-
side function (H (x)=1 for x¿0 and H (x)=0 elsewhere), the mapping operator M is repre-
sented by a cosine-hill function (see Figure 5):

Mi(r)=
1
2Ri

[H (Ri − r)−H (−Ri − r)]
[
1 + cos

(
�r
Ri

)]
(14)

centred in xi and having a radius Ri=2
√|�i|=�, where 4|�i|=�R2i is the measure of the

chosen local in�uence region. In this way, each sub-domain �i results in being in�uenced
by a local region directly related to its characteristic area because Mi varies in the domain
according to the local re�nement and, it is ensured that the mapping function covers all points
forming �i. The function Mi satis�es the following conditions:∫ ∞

−∞
Mi(r) dr=1

Mi(r)=0 when |r|¿Ri
Mi(r)=Mi(−r)

M ′
i (r)=−Mi(r)[�(Ri − r)− �(Ri + r)]− 1

2R2i
sin

(
�r
Ri

)
�[H (Ri − r)−H (−Ri − r)]

(15)

the �rst three ensuring that Mi corresponds to a �-distribution. This approach results in an
agreement with the one analysed in Reference [12], where it is demonstrated that nested
re�nements, on a structured grid, reduce the local error close to the immersed interface.
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Now, the relation between the total elastic force acting on the �uid contained in �i and the
stresses acting along the chain of points can be expressed. According to what was described in
Section 3, T(xi ; t)=

∑
k Mi(rk)S[X(sk ; t)]; ∀xi accomplishes this goal; furthermore, by remem-

bering the expression for the associated stress vector �= is�=�(sxi+syj); one gets the integral
contribution in the FV as

∫
@�i
n·T dS= ∫

@�i
n·M (is�is) dS=

∫
@�i
(n·is)M [�(sxi + syj)] dS. This

way, it is evident that the explicit expression between the tensor T and the elastic force density
according to

∫
@�i
n·T(x; t) dS= ∫

�i
[
∫
S f(s; t)�(x −X(s; t)) ds] dV as introduced in Section 3.

After having spread the stresses on the Eulerian mesh, the di�usive and convective integrals
can be computed as illustrated in the following section.

4.2.3. Time integration and numerical algorithm. The �rst step of the FTS method consists
of computing an intermediate velocity �eld, say �v∗, which is obtained by solving Equa-
tion (10) after disregarding the pressure contribution in Equation (3), namely by evaluating
the approximate �ux F̃

∗
=F− Ip=�. Accordingly, Equation (19) becomes:

ṽ∗(xi; t n+1)− ṽ∗(xi; t n) = 1
|�i|

∫ t n+1

t n
dt

∫
@�i(x)

n · (Ix′ + Rmx′)F̃∗ dS

∼= 1
|�i|

bi∑
l=1

∫
@�il

nl · F̃∗(k;m)
l dSl (16)

where bi is the number of edges composing the FV boundary i.e.
⋃bi
l=1 @�il= @�i, nl is the

outgoing unit vector normal to the l-th section @�il (see Figure 4) and F̃
∗(k;m)
l is the time

integrated numerical �ux function (see References [16; 18] for more details) given by

F̃
∗(k;m)
l =(Ix + R (m)x )E (k)t F̃

∗
l (17)

By de�ning Ladg=−∇ · (ṽ∗g), the advective operator applied to a generic scalar function
g, it results:

E (k)t g=
[
I +

�t
2
Lad + · · ·+ �t

k−1

k!
L(k−1)ad

]
g (18)

where E (k)t is an operator taking into account a Lax–Wendro�-type single step time marching
integration of the advective terms (see Reference [34]); in the following computations, the
value k=3 is �xed. The line integrals in Equation (16) are rewritten as:

bi∑
l=1

∫
@�il

nl · F̃∗(k;m)
l dS=

bi∑
l=1

∫ Qi

Pl

nl · F̃∗(k;m)
l dSl (19)

where Pl and Ql are the extreme points of a generic �ux section l, as illustrated in Figure 4,
over which it results:

n = nxi+ nyj; t= txi+ tyj

nx = i · n= cos(în); tx= i · t= cos(ît)
ny = j · n= cos(ĵn); ty= j · t= cos(ĵt)

n · ṽ∗ = nxũ∗ + nyṽ∗; n · ∇= nx @@x + ny
@
@y

(20)
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Figure 6. Geometrical de�nition of the 2-D upwind criterion adopted on the unstructured grid.
The example shows the case n ·v¡0 and n · t¡0. The region formed by the four triangles (1,2,3)
–(2,4,5)–(3,5,6)–(2,5,3) is that adopted as support for de�ning the complete second-degree

polynomial over the �ow section @�il.

Then, by introducing a complete second degree 2-D polynomial given by

ṽ∗(x; y)= c0 + c1x + · · ·+ c5y 2 = |1; x; : : : ; y 2| · |c0; c1; : : : ; c5|T =P ·CT (21)

whose support region depends on the velocity vector direction according to the multidimen-
sional upwinding criterion illustrated in Figure 6, the �ux F̃

∗
l can be computed as a function of

ṽ∗ and the advective and di�usive integrals can be expressed by means of the corresponding
integrals of the monomial basis vector P as:

bi∑
l=1

∫ Ql

Pl

nl · F̃∗(k;m)
l dSl =−

bi∑
l=1

1
txl

∫ xQl

xPl

nl · (Ix + R (m)x )E (k)t [ṽ∗(x; yl(x))ṽ∗(x; yl(x))] dx

+ �
bi∑
l=1

1
txl

∫ xQl

xPl

nl · (Ix + R (m)x )E (k)t ∇ṽ∗(x; yl(x)) dx

+
1
�

bi∑
l=1

1
txl

∫ xQl

xPl

nl · (Ix + R (m)x )E (k)t T(x; yl(x)) dx (22)

where dSl=dx=txl and the edge (PlQl) is de�ned by the linear equation:

yl(x)=
(
yQl − yPl
xQl − xPl

)
(x − xPl) + yPl = al + blx (23)

along which the polynomials in Equation (22) are integrated. Observe that T(x; y) is locally
reconstructed, on the same support region used for the velocity �eld, by interpolating the
nodal values T(xi) previously obtained from the mapping method.
If the initial condition at t n is assigned ful�lling the mass balance constraint, then ṽ∗(xi ; t n)=

ṽ(xi ; t n) and one can assign F̃∗= F̃∗[ṽ∗(x; t n)]= F̃∗[ṽ(x; t n)] in the Equation (22); the
intermediate velocity can be computed by adopting this explicit single-step time-marching
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scheme:

ṽ∗(xi ; t n+1)= ṽ(xi ; t n) +
�t
|�i|

bi∑
l=1

∫ Ql

Pl

nl · F̃∗(k;m)
l dSl (24)

representing the prediction step of the FTS method.

4.3. The Fractional Time-Step-based numerical procedure: solution of the projection step

The projection step is based on the theoretical assumption that, if ṽ∗ is su�ciently smooth,
according to the Helmholtz–Hodge decomposition in a bounded domain �, ṽ∗ can be de-
composed as ṽ∗=ṽ + ∇’, i.e. in the sum of a divergence-free vector and a pure gradient
�eld. Thus, a projection operator P, extracting the divergence-free part of ṽ∗, is introduced
[19; 36] and applied to both sides of Equation (10), in which Equation (24) is substituted,
while taking into account that P(∇p)= 0 and P(ṽ)= ṽ. If n · v=0 on @�, then the compo-
nents (ṽ;∇’) are orthogonal and it can be shown that the decomposition is unique [36]; as a
consequence, in order to retain the orthogonal decomposition when n · v= vn �=0 on @�, one
must consider ’=’′+f where f is a suitable harmonic function such that n · ∇f= − vn on
@� so that the orthogonal components become (ṽ + ∇f;∇’′); similar considerations apply
for the Helmholtz–Hodge decomposition with assigned tangential component.
In order to ensure a �nal divergence-free velocity �eld, the intermediate �eld of Equa-

tion (24) is corrected by means of the pressure contribution, corresponding to the potential
part of the velocity ṽ∗. It is worthwhile to remark that for isothermal incompressible �uids
no primitive pressure equation exists being the pressure p derived only from Equation (1)
coupled with the constraint of Equation (2). The equation for the time-averaged pressure

〈p〉(x)= 1
�t

∫ t n+1

t n
p(x; t) dt (25)

is obtained by performing the divergence of Equation (10), where the velocity �eld ṽ(x; t n+1)
is imposed to be divergence-free. The result consists of∫

@�i

@〈p〉
@n

dS=
�
�t

∫
@�i
n · [ṽ∗(x; t n+1)− ṽ(x; t n)] dS (26)

which is the Poisson equation∗∗ for 〈p〉.
It is well known [36] that Equation (26) admits a unique solution (apart from a constant)

as long as the non-homogeneous Neumann boundary conditions

�t
�
@〈p〉
@n

= n · ṽ∗(x; t n+1)− vn+1n

associated with the whole boundary @� ful�l the compatibility condition (imposed the con-
straint of Equation (2)); this condition is also necessary for solving Equation (26) by means
of iterative procedures, in this case is an optimized SOR. This kind of boundary condition

∗∗Let us observe that the source term in Equation (26) contains also the residual velocity divergence of the time
step n. This is done in order to avoid local divergence errors (due to approximate projection that depends
on the local truncation error) to cumulate during time integration. However, its surface integral over @� must
vanish.
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accomplishes the fact that neither pressure nor intermediate velocity values are required on
the boundary, but the only knowledge of the normal velocity vn+1n is required to close the
problem. The �nal result expressed by Equation (26) and such boundary conditions consists
of an equivalent Poisson problem with homogeneous Neumann boundary conditions and a
modi�ed source term, obtained when the divergence operator is de�ned onto the subspace
of vectors with normal component on the boundary equal to the normal velocity component
vn+1n , this equivalence does not imply that the computed pressure �eld has a vanishing normal
derivative on the boundary.
Owing to the arbitrary pressure reference value, one can assign a value in a point and

according to the Helmholtz–Hodge decomposition with tangential component t ·∇〈p〉 assigned
along the boundary (t is the unit tangential vector along @�), the solution is still unique if the
compatibility conditions are veri�ed. Therefore, when tangential components are assigned, the
normal velocity component cannot be prescribed but it must result from the interior solution.
In the present computations, the reference pressure value is assigned at a point onto the
ventricle walls and t · ∇〈p〉=0 allows us to assign the time behaviour of the pressure along
that part of @� corresponding to the ventricular walls.
Eventually, the intermediate velocity �eld ṽ∗(x; t n+1) is projected onto the space of

divergence-free vector �elds and the single step time marching formula can be corrected
by the pressure term as:

ṽ(xi ; t n+1)= ṽ
∗(xi ; t n+1)− �t

�|�i|
∫
@�i
n〈p〉 dS (27)

Even if it is out of the aim of the present study to analyse the accuracy of the IB method,
it is known that the FTS procedure can limit the time accuracy of the solution to be �rst
order, albeit higher order schemes are adopted separately in the prediction and projection
steps. It is still debated if the fractional method could be adopted for accurately computing
in time both velocity and pressure [21–24]. This turns out because the splitting between
the velocity integration and the pressure one is intrinsically a low order procedure if not
performed with a proper strategy. Some of these studies indicated that is preferable either to
adopt multi-step methods or to resort to successive nested iterations (like the Uzawa method).
Moreover, the development of a spatially accurate IB method is still in progress because in the
classical formulation only a �rst order accuracy is achieved close to the immersed boundary
[12; 26; 27]. In the following section, the previously described numerical procedure is applied
in order to simulate the diastole.

5. RESULTS

In order to validate the capability of the model in describing the main physical mechanisms
of the �lling, the diastole is �rstly simulated with normal physiologically parameters.
In order to close the problem, the boundary conditions need to be speci�ed. Dirichlet in�ow

conditions, i.e. the law describing the �ow in the pulmonary veins, are uniformly assigned
(see Figure 7) on the two inlets in atrium, according to the experimental data [28]:

n|p · v=Vp(t)=
 Vmaxe1=2

t exp(−t2=2T 2max)
Tmax

for t¡Tac

c0 + c1t + c2t2 + c3t3 for t¿Tac
(28)
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Figure 7. Representation of the time-dependent velocity in Equation (28) adopted as Dirichlet
in�ow condition on the pulmonary veins. An exponential law for trie early rapid �lling and a third

degree polynomial for the atrial contraction are adopted.

where Vmax is the peak velocity, reached at Tmax (the acceleration time of early �ow), while
Tac is the time of the start of the atrial contraction during which the pulmonary �ow reverses,
owing to the increasing of the atrial pressure. This reverse-�ow is directly imposed on the inlet
velocity by using a third order polynomial interpolation, obtained by imposing zero velocity at
t=Tac and at the end of contraction t=Tend and by �xing a minimum velocity of −0:18ms−1
in the intermediate period, as suggested by clinical experiments.
The atrial contraction is modelled by assuming a suitable uniform normal velocity distri-

bution along the walls of the atrium. As it was already mentioned, it is rather complicated to
extract useful numerical boundary conditions from volumes experimental measurements per-
formed during the atrial contraction. Among several velocity distributions that were tested,
the best results were obtained by imposing a uniform normal velocity along the atrial walls,
modulated in time according to the law

n|w · v=Vw(t)=Vac sin[�(t − Tac)=(Tend − Tac)] (29)

where Vac=0:1 ms−1.
In order to satisfy the mass balance, as no deformation of the ventricular wall is considered

in the model, blood is allowed to �ow through the ventricular walls as if the surfaces were
permeable. The pressure time-law is imposed along the walls of the ventricle according to
experimental measurements obtained by means of catheterism techniques and such law is
characterized, at the beginning of diastole, by an exponential decreasing followed by a linear
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Figure 8. Time representation of the computed atrial pressure and of the ventricular pressure
imposed during diastole. Pressure in the ventricle is assigned as an exponential fall law followed
by a linear increasing law according to Equation (30). In the plot, pressures are expressed in

mm Hg (760 mm Hg=1:01325 105 N m−2).

increasing caused by rapid �lling [1; 2] according to

pv(t)=
p0v
e

[
e−t= +

t
Tend

]
(30)

where  is the characteristic relaxation time depending on the compliance. As a consequence,
the normal components of the velocity on the ventricle are not imposed but they are recovered
from the pressure �eld computation in such a distribution to satisfy the total mass balance.
The reference values of the main geometrical parameters are the following: the diameter

of the mitral ring is �xed to 0.032 m and the atrium-to-ventricle apex length to 0:1 m (see
Figure 2). The values of the dynamics parameters, adopted for the simulation of a normal
case, are: Vmax =0:55 m s−1; Tmax =0:08 s, Tac=0:375 s, p0v=100 mm Hg, =0:01 s. At the
resting condition, each lea�et is described by a suitable parabolic law y(x) and discretized by
40 elements over which the �bre strain is assumed to cause only tension stresses, starting from
an assigned length at rest while the chordae tendineae tension is computed with respect to
the initial arbitrary length. The time integration is performed over a standard normal diastole
time period of Tend = 0:53 s at a Courant number of 0.1.
The computed atrial pressure and the ventricular pressure, imposed during diastole according

to Equation (30), is reported in Figure 8; in the plot, the pressures is expressed in mm Hg
(760 mm Hg=1:01325×105 N m−2) and the time t in seconds. It is noticeable that, owing
to the early �lling, the computed left atrial pressure becomes lower than the ventricular one.
The average pressure gradient decreases and, transiently, reverses (for t¿0:1 s the pressure
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Figure 9. Patterns of E-A waves for the normal case computed at di�erent locations (a)–(f) along the
control line (atrium–ventricle line illustrated in Figure 2).

in the atrium becomes lower than in the ventricle) according to the real physical behaviour
during the slow �lling. Then, the atrial contraction (modelled by means of the normal velocity
distribution) increases the pressure late in diastole (t¿0:4 s), producing blood to �ow again
in the left ventricle, according to the A wave shown in Figure 1(a). In order to compare
numerical and experimental results, the time evolution of the stream-wise �ow is recorded at
several locations along a control line extending for 0:05 m in the heart section. Such control
line is positioned between the tips of the mitral lea�ets, the �rst station being located in the
atrium at y=0:03m, crosses the mitral ring and extends up to the initial part of the ventricle
(y=0:08 m, see Figure 2); in this way, a map of the quantities in the (t; y) plane can be
computed and compared with clinical measurements obtained by the M-mode colour Doppler.
Rigorously speaking, a quantitative comparison is not possible because the 2-D numerical
quantities are expressed for unit area, while experimental measurements are expressed in
terms of volume units.
The patterns of E-A waves, computed at di�erent locations ((a)–(f)) along the control

line (the atrium-to-ventricle line illustrated in Figure 2), are reported in Figure 9. For sake
of completeness the curve of the assigned pulmonary in�ow velocity is also reported. These
patterns con�rm a good agreement with the experimental E-A waves and the shift of velocity
maximum, at each time, is captured.
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In Plate 1(a)–(d), the velocity vectors and the mitral lea�ets movement are plotted during
the rapid �lling, while in Plate 1(e)–(h) they appear during the slow �lling and the atrial
contraction. In (a) and (b) the onset of the diastole with a great part of blood �owing into the
ventricle is evident while, in (c) and (d), it appears that vortices are formed at the tips of the
valve lea�ets, being the vorticity produced along the immersed line; these vortices dominate
the �ow pattern (e) and (f), leading to a partial closure of the mitral valve. In (g) and (h)
it appears that the atrial contraction, re-opening the mitral valve, causes blood to �ow again
into the ventricle with a generation of new vortices.
Let us note that the velocity vectors, appearing to cross the lea�ets, do not violate the

non-permeable condition but they are only an expression of the fact that the lea�ets move at
the local �uid velocity. Although the velocity vector �eld is not fully representative of a real
3-D case, the physics of diastole seem to be correctly captured, even for the mechanism of
closure.
A velocity magnitude map in the (t; y) plane is obtained by joining single E-A waves,

measured at di�erent locations, and is reported in Plate 2(b); the stream-wise value is recorded
on the stations ranging, from bottom to top of the �gure, between 0:03 m to 0:08 m.
In order to test the model sensitivity to the perturbation of some physiological parameters,

the values of Tmax was slightly modi�ed. Firstly it was decreased to 0.07 s (the result is
reported in Plate 2(a) wherein the black line individuates the mitral plane) and then it was
increased to 0.09 s (Plate 2(c)). As a result of this parameter modi�cation, a strong variation,
both of the area characterizing the �lling and the corresponding peak velocity, is highlighted.
This is relevant information from a clinical point of view [1; 2], being the parameter Tmax a
Doppler index indicating the inertia in the valve opening.
A qualitative comparison with an experimental M-colour Doppler measurement is reported

in Plate 3, where the experimental velocity map in the (t; y) plane was recorded from the
equipment, without any signal �ltering, and is reported in Plate 3(c). In Plate 3(c) the signal
was �rst processed by means of a convolution with a proper �ltering function, while in
Plate 3(b) the numerical result in a normal case is reported. The y-range of the experimental
measurement is limited from 0:045 m to 0:08 m while the time range is (0 s; 0:6 s). The
good qualitative agreement with clinical data, reached for the normal case, suggests that the
simpli�cations assumed in this model can be considered satisfactory, accomplishing the target
of describing the main physical mechanism of diastole.

6. CONCLUSIONS

The present study was devoted to the development of the Immersed Boundary Method on
2-D unstructured grids with the aim of simulating the diastolic phase of the cardiac cycle by
using a simpli�ed physical model. The di�culties in simulating such a problem are originated
by several elements; some of them are related to the numerical accuracy (mass conservation
near the immersed boundaries), others to the incertitude in boundary conditions not obtainable
from clinical measurements. In order to close the system of equations, approximate boundary
conditions were tested to validate their in�uence on the physics of the problem.
For what it concerns the numerical method, an explicit single step time marching Finite

Volume scheme was implemented in the framework of the fractional time-step procedure.
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In order to face the poor spatial accuracy of the method near an immersed line, the new
element, introduced in this paper, is the implementation of the method on unstructured grids
instead of using nested-re�ned structured ones that were highlighted in other works. The
dynamic of the mitral valve was simulated by adopting a Lagrangian approach and the stresses
were spread on the Eulerian grid by means of a discrete point-wise mapping function. An
accurate �ux reconstruction, adopted on Finite Volumes of general shape, was developed in
an original formulation: a proper deconvolution procedure for obtaining a better representation
of the volume-averaged velocity was introduced for unstructured grids.
In order both to reproduce a normal function and to test the model sensitivity to changes of

physiological parameters, di�erent simulations were performed. The numerical results
con�rmed the good agreement between the simulation and the real ventricular �lling. The
physiological normal case was qualitatively compared to a clinical experimental measurement
obtained by Doppler analysis and it showed a good agreement in the �lling function. Although
a fully 3-D simulation is required for quantitative comparisons, nevertheless the simpli�ed
2-D model can help clinicians in evaluating the physical implications of some experimental
Doppler indices.
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Plate 1. (a–d) Computed velocity vectors and dynamic of the mitral lea�ets during (a)–(d) the rapid
�lling, (e)–(h) the slow �lling and the atrial contraction.
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Plate 1. Continued.
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Plate 2. Velocity magnitude maps in the (t; y) plane. For each �gure the time is expressed in seconds
along the x-direction. In the y-direction, the stream-wise value (along the control line of Figure 2)
ranging, from bottom to top of the �gures, between 0:03 m to 0:08 m, is registered. Colour map
scale magnitude is in m s−1. The black line on (a) individuates the mitral plane. In (a) Tmax = 0:07s,

(b) (normal physiological case) Tmax = 0:08 s. (c) Tmax = 0:09 s.
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Plate 3. Velocity magnitude maps in the (t; y) plane. In (b) it is again reported the numerical result
of the normal case of Figure 11(b). In the y-direction, the stream-wise value (along the control
line represented in Figure 2) ranging, from bottom to top, between 0:03 m to 0:08 m, is registered.
The y-range of the experimental measurement obtained with the M-mode colour Doppler, is limited

between 0:045 m to 0:08 m while the time range is (0 s; 0:6 s).

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38(12)


